Direct comparison of the BD phoenix system with the MicroScan WalkAway system for identification and antimicrobial susceptibility testing of Enterobacteriaceae and nonfermentative gram-negative organisms.
نویسندگان
چکیده
The Phoenix automated microbiology system (BD Diagnostics, Sparks, MD) is designed for the rapid identification (ID) and antimicrobial susceptibility testing (AST) of clinically significant human bacterial pathogens. We evaluated the performance of the Phoenix instrument in comparison with that of the MicroScan WalkAway system (Dade Behring, West Sacramento, CA) in the ID and AST of gram-negative clinical strains and challenge isolates of Enterobacteriaceae (n = 150) and nonfermentative gram-negative bacilli (NFGNB; 45 clinical isolates and 8 challenge isolates). ID discrepancies were resolved with the API 20E and API 20NE conventional biochemical ID systems (bioMerieux, Durham, NC). The standard disk diffusion method was used to resolve discordant AST results. The overall percentages of agreement between the Phoenix ID results and the MicroScan results at the genus and species levels for clinical isolates of Enterobacteriaceae were 98.7 and 97.7%, respectively; following resolution with conventional biochemical testing, the accuracy of the Phoenix system was determined to be 100%. For NFGNB, the levels of agreement were 100 and 97.7%, respectively. Both systems incorrectly identified the majority of the uncommon nonfermentative nonpseudomonal challenge isolates recovered from cystic fibrosis patients; these isolates are not included in the databases of the respective systems. For AST of Enterobacteriaceae, the rate of complete agreement between the Phoenix results and the MicroScan results was 97%; the rates of very major, major, and minor errors were 0.3, 0.2, and 2.7%, respectively. For NFGNB, the rate of complete agreement between the Phoenix results and the MicroScan results was 89.1%; the rates of very major, major, and minor errors were 0, 0.5, and 7.7%, respectively. Following the confirmatory testing of nine clinical isolates initially screened by the MicroScan system as possible extended-spectrum-beta-lactamase (ESBL)-producing organisms (seven Klebsiella pneumoniae isolates and two Escherichia coli isolates), complete agreement was achieved for eight isolates (one ESBL positive and seven negative); one false positive was obtained with the Phoenix instrument. The MicroScan system correctly detected the 10 ESBL challenge isolates, versus the 6 detected by the Phoenix system. Overall, there was good correlation between the Phoenix instrument and the MicroScan system for the ID and AST of Enterobacteriaceae and common NFGNB. The Phoenix system is a reliable method for the ID and AST of the majority of clinical strains encountered in the clinical microbiology laboratory. Until additional performance data are available, results for all Klebsiella pneumoniae or Klebsiella oxytoca and E. coli isolates screened and confirmed as ESBL producers by any automated system should be confirmed by alternate methods prior to the release of final results.
منابع مشابه
Microscan Walkaway for Identification and Antimicrobial Susceptibility Testing of Enterobacteriaceae and Non-Fermentative Gram-negative Organisms
متن کامل
Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, Microscan WalkAway, Vitek 2); high error rates with Microscan WalkAway
BACKGROUND Increasing reports of carbapenem resistant Acinetobacter baumannii infections are of serious concern. Reliable susceptibility testing results remains a critical issue for the clinical outcome. Automated systems are increasingly used for species identification and susceptibility testing. This study was organized to evaluate the accuracies of three widely used automated susceptibility ...
متن کاملComparison of an Automated System with Conventional Identification and Antimicrobial Susceptibility Testing
The present study was designed to compare a fully automated identification/antibiotic susceptibility testing (AST) system BD Phoenix (BD) for its efficacy in rapid and accurate identification and AST with conventional manual methods and to determine if the errors reported in AST, such as the (very major errors) VME (false susceptibility), (major errors) ME (false resistance), and (minor errors)...
متن کاملMultilaboratory study of the Biomic automated well-reading instrument versus MicroScan WalkAway for reading MicroScan antimicrobial susceptibility and identification panels.
This study compared the Biomic automated well reader results to the MicroScan WalkAway results for reading MicroScan antimicrobial susceptibility and identification panels at four different sites. Routine fresh clinical isolates and quality control (QC) organisms were tested at each study site. A total of 46,176 MicroScan panel drug-organism combinations were read. The Biomic category agreement...
متن کاملIdentification of Hafnia alvei with the MicroScan WalkAway system.
Hafnia alvei is a gram-negative facultatively anaerobic bacillus that belongs to the family Enterobacteriaceae. This organism is a causative agent of intestinal disorders and is found in different environments. H. alvei has received increased clinical attention as a cause of different infections in humans. This study was performed to compare the MicroScan WalkAway automated identification syste...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of clinical microbiology
دوره 46 7 شماره
صفحات -
تاریخ انتشار 2008